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ABSTRACT The folding of some proteins appears to be a
two-state kinetic process. A two-state kinetic model is justified
if protein molecules rapidly equilibrate between different
unfolded conformations prior to complete folding. Here I show
that this rapid equilibration is a natural consequence of
reasonable assumptions about reaction rate constants and
folding thermodynamics.

Folding Kinetics

The folding of some proteins appears to be a two-state kinetic
process (1). The rate equation is

dPN
dt

5 kfPU 2 kuPN, PN 1 PU 5 1, [1]

where PN is the fraction of protein in its native state N and PU
is the fraction of protein in the unfolded state U. The folding
rate is kf and the unfolding rate is ku.
How can a two-state kinetic model of protein folding ever be

valid? We must be careful about what the word ‘‘state’’ means.
It denotes a region of configuration space, usually the neigh-
borhood of a potential minimum. The native state is associated
with the deepest minimum. The ‘‘unfolded state’’ is the rest of
configuration space. It is made up of a large number of distinct
regions, each one associated with a local minimum or confor-
mation of the polypeptide chain. (In a commonly used illus-
tration, a protein of 100 amino acids may have of the order of
3100 conformations.) If the regions of configuration space are
properly chosen, the protein remains in one state long enough
to reach local equilibrium, and then jumps to another state.
Thus folding appears to be intrinsically a many-state kinetic
process, described by the more general rate equation

dPa
dt

5 O
b
k~b 3 a!Pb 2 O

b
k~a 3 b!Pa, [2]

where Pa is the fraction of protein in a particular region or
conformational state a. The native state is a 5 N, and the
‘‘unfolded state’’ is all a Þ N. The first sum is the total gain in
state a due to transitions from other states b, and the second
sum is the total loss from state a due to transitions to other
states b. The long time limit Pa(t3 `) of the solution of these
equations is the equilibrium fraction Pa(eq).
In justifying a kinetic two-state model, Creighton (2, 3)

observed that ‘‘the experimental evidence . . . is largely con-
sistent with the following general scheme: under folding
conditions, unfolded protein molecules rapidly equilibrate
between different conformations prior to complete refolding.’’
In this view, the ‘‘unfolded state’’ is actually an equilibrium
distribution of many unfolded or partially folded conforma-

tional states. I show here that this rapid equilibration is a
consequence of reasonable assumptions about rate constants
and the thermodynamics of folding.

Rate Constants

Where do the rate constants come from? One source is
transition state theory; this may be more appropriate for gas
phase reactions than for protein folding in solution. Another
more likely source is Kramers’ theory of Brownianmotion over
potential barriers; this is probably more appropriate for folding
in solution.
In both transition state theory and Kramers’ theory, the rate

constant k(a3 b) has a special structure which leads to rapid
equilibration of the unfolded states. It is determined by a
quantity Ba,b that depends only on the boundary dividing the
initial state a and the final state b, and by the partition function
Qa of the initial state,

k~a 3 b! 5
Ba,b
Qa
. [3]

In quantum transition state theory, the boundary factor in Eq.
3 is

Ba,b 5
kT
h
Qa,b‡ , [4]

where Qa,b‡ is the partition function of the ‘‘activated complex’’
or transition state. It is determined solely by the boundary
between the regions of configuration space associated with the
two states a and b. In the limit of small Planck constant, all
factors of h cancel, and the classical transition state theory rate
constant has a similar form, but with classical partition func-
tions instead.
The transition rate in Kramers’ theory has the same general

form. The standard example is Brownian motion over a
one-dimensional potential barrier; however, the theory has
been extended to more general multidimensional processes.
Ref. 4 provides an excellent review of Kramers’ theory and the
surprisingly deep relation to transition state theory that was
discovered by Pollak (5). As in transition state theory, the
boundary factor in Kramers’ theory is determined by the
potential barrier or saddle point separating the regions of
configuration space corresponding to the states a and b. In
Kramers’ theory, the time scale is set by a friction coefficient,
which is usually attributed to the viscosity of the surrounding
medium. In a study of the dynamics of conformational changes
in myoglobin, Ansari et al. (6) found that Kramers’ theory
worked quite well, but both solvent viscosity and internal
friction are needed.
The transition rates that are widely used in Metropolis

Monte Carlo simulations of lattice models of protein folding
have a structure that is different from Eq. 3. The partition
functions of both the initial and final states are involved. If the
free energy of the final state b is lower than that of the initial
state a, or Qb . Qa, the rate from a to b is k1 and is the same
for all initial states. Otherwise the rate from a to b is k1QbyQa.
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The Metropolis Monte Carlo rules were designed for conve-
nience and for a computationally fast approach to equilibrium,
but they have no theoretical basis, and they may not be an
accurate representation of actual kinetics.
In both transition state theory and Kramers’ theory, the

boundary factor is the same whether the protein moves from
a to b or from b to a,

Ba,b 5 Bb,a, [5]

The reaction rate constants must satisfy the principle of
detailed balance; at equilibrium, forward and backward rates
must be equal,

Pa(eq)k~a 3 b! 5 Pb(eq)k~b 3 a!. [6]

This condition is automatically satisfied, because Pa(eq) is
proportional to the partition function Qa that appears in the
denominator of k(a 3 b).
The rate constants in transition state theory and Kramers’

theory depend on boundary factors and on partition functions
for the various conformational states. In a folding transition,
the partition functions change substantially as the folding
conditions are varied slightly. I assume that the boundary
factors, associated with barriers, are much less sensitive to
folding conditions. Further, I assume that there are no dra-
matic differences between barriers which might lead to trap-
ping in special unfolded states. (An example of trapping is the
slow cis-trans isomerization of proline peptide bonds.) Then
the variation of the rate constants is determined mainly by
folding thermodynamics.

Folding Thermodynamics

Each individual state a has its own partition function Qa. The
native state has the partition function QN. The purpose of the
present section is to show that under folding conditions, Qa for
any single unfolded state is much smaller than QN.
The total partition function Qtotal is the sum over all states,

Qtotal 5 O
a
Qa. [7]

The equilibrium fraction of protein in the single state a is

Pa(eq)5
Qa
Qtotal

. [8]

In particular, the fraction of protein in the native state a 5 N
is

PN(eq)5
QN
Qtotal

. [9]

The folding transition is produced by a change in folding
conditions, for example in temperature or in the concentration
of a denaturant. If the folding conditions favor a completely
unfolded protein, all of the partition functions Qa are roughly
the same size and all of the rate constants are comparable.
Suppose that experimental conditions are changed to favor

folding, so that the equilibrium fraction of native protein varies
from small, say PN(eq) ' 0.01, to large, PN(eq) ' 1. Then in
this range of folding conditions, the partition function of the
native state is a substantial fraction of the total partition
function,QNyQtotal. 0.01. The remaining partition function of
all the unfolded states,

QU 5 O
aÞN

Qa, [10]

is always smaller than Qtotal, and the ratio QUyQN is always
smaller than 100. The ratio of the partition function Qa of a

single unfolded state to the partition function QN of the native
state is limited by

Qa
QN

5
Qa
QU

QU
QN

, 100
Qa
QU
. [11]

If there are a very large number of unfolded states, each one
can make only a small contribution toQU, and the ratioQayQU
is expected to be very much smaller than 1y100. Under folding
conditions, any individual Qa is much smaller than QN.

Rapid Equilibration

The rate constants, from either transition state theory or
Kramers’ theory, are inversely proportional to partition func-
tions. Then under folding conditions, the rate constant for
escape from any single unfolded state is much larger than the
rate constant for escape from the native state. However, the
connectivity of the transition rate matrix must also be taken
into account. Each state corresponds to a region of configu-
ration space. In transition state theory or Kramers’ theory,
transitions can occur only if the two regions have a common
boundary; then they are ‘‘connected.’’ If conformational tran-
sitions are due to local rearrangements, then any single
unfolded state in a protein with n amino acids can probably
connect to the order of n other states. The actual number of
connections may be larger because of the possibility of more
global motions—for example, the diffusion of two segments of
the chain relative to each other. The native state connects to
a number of ‘‘gateway’’ unfolded states. If the protein is in a
gateway state, it can make transitions to the single native state
or to many other unfolded states, all with comparable rates.
Then transitions between unfolded states are statistically more
likely than transitions into the native state. This observation,
along with the earlier estimate of the relative order of mag-
nitude of rate constants, leads to the conclusion that folding
kinetics involves two distinctly different time scales.
Another way to make transitions to other unfolded states

more likely than transitions to the native state is to impose a
free energy barrier between unfolded and native states. How-
ever, if one wants to use a free energy barrier, then it must be
a function of some coordinate, a measure of the distance from
an unfolded state to the native state. For a barrier to be useful
in kinetics, the coordinate must vary slowly with time, and local
equilibrium with respect to that coordinate must be reached
rapidly. It is hard to verify that any coordinate except the
occupancy of the native state satisfies these requirements.
According to experiment (7), the fast time scale extends

from microseconds to milliseconds, and the slow time scale
may require seconds or minutes. In the fast time scale, the
unfolded protein moves rapidly between unfolded or partially
folded conformational states. After a short time these states
come to local thermodynamic equilibrium, and all details
about the initial state and the sequence of transitions (the
‘‘folding mechanism’’) are forgotten. The fraction of folded
protein varies on the slow time scale. This is precisely the
scheme proposed by Creighton.

Two-State Kinetics

Now it is easy to show explicitly how the many-state rate
equation reduces to the two-state equation. Transitions be-
tween unfolded states are fast, and the ensemble of unfolded
states relaxes rapidly to local thermodynamic equilibrium.
However, after this fast relaxation the total fraction of un-
folded states will still change, as the fraction in the native state
changes. This can be handled by a time-dependent normaliza-
tion coefficient c(t), so that after the fast relaxation, the

Biophysics: Zwanzig Proc. Natl. Acad. Sci. USA 94 (1997) 149



time-dependent Pa(t) is proportional to the equilibrium Pa(eq),

Pa~t! 3 c~t!Pa(eq). [12]

The coefficient is determined by a normalization condition,

O
aÞN

Pa~t! 5 1 2 PN~t!. [13]

Then, after the fast relaxation, the fraction in any unfolded
state is approximately

Pa~t! 3
1 2 PN~t!
1 2 PN(eq)

Pa(eq). [14]

This is the approximation that leads to two-state kinetics.
When it is inserted into the rate equation for the native state,

dPN~t!
dt

5 O
aÞN

k~a 3 N!Pa~t! 2 O
aÞN

k~N 3 a!PN~t!, [15]

the result is

dPN~t!
dt

5 O
aÞN

k~a 3 N!
1 2 PN~t!
1 2 PN(eq)

Pa(eq)

2 O
aÞN

k~N 3 a!PN~t!. [16]

The first term can be simplified by using the detailed balance
condition

k~a 3 N!Pa(eq)5 k~N 3 a!PN(eq). [17]

Then Eq. 15 becomes

dPN~t!
dt

5 O
aÞN

k~N 3 a!
1 2 PN~t!
1 2 PN(eq)

PN(eq)

2 O
aÞN

k~N 3 a!PN~t!. [18]

This has exactly the structure of the two-state kinetic model,

dPN~t!
dt

5 kf ~1 2 PN~t!! 2 kuPN~t!. [19]

The unfolding rate is the sum of all transition rates from the
native state to all gateway states,

ku 5 O
aÞN

k~N 3 a! [20]

and the folding rate is

kf 5 ku
PN(eq)

1 2 PN(eq)
. [21]

Summary

This qualitative justification of a two-state kinetic model was
based on a number of assumptions. (i) The statistical thermo-
dynamics of the folding transition is well described by a single
folded state and a large ensemble of unfolded states. (ii) Any
individual unfolded state makes a very small contribution to
the total partition function of unfolded states. (iii) Transition
rate constants are inversely proportional to the partition
functions of single conformational states, and unfolded states
make transitions to many other unfolded states. (iv) The
boundary factors in rate constants are insensitive to changes in
folding conditions. (v) There are no exceptional barriers
between particular unfolded states that might lead to trapping
for long periods of time. If a particular protein meets these
requirements, then one should expect that its folding kinetics
is well described by a two-state model.
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